Adaptations of anaerobic archaea to life under extreme energy limitation.

نویسندگان

  • Florian Mayer
  • Volker Müller
چکیده

Some anaerobic archaea live on substrates that do not allow the synthesis of 1 mol of ATP per mol of substrate. Energy conservation in these cases is only possible by a chemiosmotic mechanism that involves the generation of an electrochemical ion gradient across the cytoplasmatic membrane that then drives ATP synthesis via an A1AO ATP synthase. The minimal amount of energy required is thus depending on the magnitude of the electrochemical ion gradient, the phosphorylation potential, and the ion/ATP ratio of the ATP synthase. Methanogens, Thermococcus, Pyrococcus, and Ignicoccus have evolved different ways to energize their membranes, such as methyltransferases, H+, or NAD+ reducing electron transport systems fueled by reduced ferredoxin or H2 -dependent sulfur reduction that all operate at the thermodynamic limit of life. The structure and function of the enzymes involved are discussed. Despite the differences in membrane energization, they have in common an A1AO ATP synthase that shows an extraordinary divergence in rotor composition and structural adaptations to life under these conditions. In sum, adaptation of anaerobic archaea to energy-limited substrates involves chemiosmotic energy coupling, often with Na+ as coupling ion and a structurally and functionally highly adapted ATP synthase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations.

The ability of microorganisms to withstand long periods with extremely low energy input has gained increasing scientific attention in recent years. Starvation experiments in the laboratory have shown that a phylogenetically wide range of microorganisms evolve fitness-enhancing genetic traits within weeks of incubation under low-energy stress. Studies on natural environments that are cut off fro...

متن کامل

Adaptations of the archaeal cell membrane to heat stress.

In extreme environments varying from hot to cold, acidic to alkaline, and highly saline, mainly Archaea are found. Thermophilic and extremely acidophilic Archaea have a membrane that contains membrane spanning tetraether lipids. These tetra-ether membranes have a limited permeability for protons even at the high temperatures of growth and this property makes it possible for thermophilic archaea...

متن کامل

Protein Adaptations in Archaeal Extremophiles

Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups ...

متن کامل

Halophilic archaea on Earth and in space: growth and survival under extreme conditions.

Salts are abundant on Mars, and any liquid water that is present or may have been present on the planet is expected to be hypersaline. Halophilic archaea (family Halobacteriaceae) are the microorganisms best adapted to life at extremes of salinity on Earth. This paper reviews the properties of the Halobacteriaceae that may make the group good candidates for life also on Mars. Many species resis...

متن کامل

Genetic manipulation of Methanosarcina spp.

The discovery of the third domain of life, the Archaea, is one of the most exciting findings of the last century. These remarkable prokaryotes are well known for their adaptations to extreme environments; however, Archaea have also conquered moderate environments. Many of the archaeal biochemical processes, such as methane production, are unique in nature and therefore of great scientific inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology reviews

دوره 38 3  شماره 

صفحات  -

تاریخ انتشار 2014